ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
P. A. Rayjada, N. P. Vaghela, N. L. Chauhan, A. Sircar, E. Rajendrakumar, L. M. Manocha, P. M. Raole
Fusion Science and Technology | Volume 65 | Number 2 | March-April 2014 | Pages 194-198
Technical Paper | doi.org/10.13182/FST13-649
Articles are hosted by Taylor and Francis Online.
India has proposed to develop and test the Lead-Lithium–cooled Ceramic Breeder Test Blanket Module (In-LLCB-TBM) in ITER. This concept, unlike some others, may need a high-performance ceramic coating on the inner wall to meet dual requirements such as high insulation to mitigate magnetohydrodynamic effects and a tritium permeation barrier to avoid tritium in the structural material. We deposit Er2O3 coatings using a direct-current magnetron reactive sputter deposition technique. As part of optimizing the coating from the application point of view, we carried out a series of deposition experiments. These included investigating the effects of substrate temperature in the range 165°C to 360°C, the effects of postannealing, and the effects of oxygen-to-argon gas flow ratio, keeping all other process parameters constant. Primarily, a densely packed film is required to grow in the most stable cubic crystal structure, with very high resistivity, in the range of gigaohm-centimeters to teraohm-centimeters. The results indicate that erbia films of thicknesses in the range 270 to 1000 nm are formed in amorphous, monoclinic, and cubic phases, where the cubic phase content is enhanced in a narrow window of the flow ratio at 360°C. Both crystalline phases seem to grow in a preferred crystalline direction. Post-vacuum-annealing at 500°C for 2 h largely transforms the monoclinic phase into the cubic phase.