ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
B. K. Shukla
Fusion Science and Technology | Volume 65 | Number 1 | January 2014 | Pages 145-153
Lecture | doi.org/10.13182/FST13-647
Articles are hosted by Taylor and Francis Online.
The 82.6 GHz/200 kW and 42 GHz/500 kW electron cyclotron resonance heating (ECRH) systems will be used in Tokamak SST-1 to carry out preionization and start-up experiments at 3.0- and 1.5-T operation. The 82.6-GHz gyrotron system has been tested for continuous waves (1000-s duration) using a conventional high-voltage power supply and for pulsed operation (200 kW for 1 s) using a regulated high-voltage power supply. The 42-GHz ECRH system is a pulsed system (500 ms), which will be used to carry out preionization and start-up experiments at 1.5 T (fundamental harmonic) on SST-1 and at 0.75 T (second harmonic) on Tokamak Aditya. The circular corrugated waveguide-based transmission line system contains two waveguide switches: one to test the gyrotron on a dummy load or the tokamak and the second switch to launch the ECRH power, either in SST-1 or in Aditya. The 42-GHz system has been tested on a dummy load, and the gyrotron delivers 500-kW power at beam voltage ∼49 kV and beam current ∼18 A. The output of the gyrotron is Gaussian (TEM00 mode) with mode purity >99%. The system is commissioned on both tokamaks (SST-1 and Aditya) to launch power in any tokamak.