ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Ryo Suzuki, Masakatsu Saito, Toshihisa Hatano
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 242-246
Technical Paper | Fusion Energy - Divertor and Plasma-Facing Components | doi.org/10.13182/FST03-A341
Articles are hosted by Taylor and Francis Online.
The fracture strength was estimated for copper-alloy CuCrZr, and their HIPed joints with SS316L and CuCrZr, which were the candidate materials consisting of the First Wall of ITER. Fracture toughness and fatigue crack propagation ratio of those materials were superior to those of copper-alloy DS-Cu and its HIPed joint with SS316. It was confirmed that the cracks near the CuCrZr/SS316L HIPed boundary was propagated in copper-alloy along the interface at a distance of about 10m from the interface. The lost of ductility of all materials caused the decrement of fracture toughness and increment of crack propagation ratio in high temperature (573K).