ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. Hasegawa, S. Nogami, S. Miwa, K. Abe, T. Taguchi, N. Igawa
Fusion Science and Technology | Volume 44 | Number 1 | July 2003 | Pages 175-180
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A329
Articles are hosted by Taylor and Francis Online.
The mechanical properties of advanced SiC/SiC composite and polycrystalline, monolithic -SiC under dual- and triple-ions irradiation to 1 and 10 dpa at 800°C, 1000°C, and 1300°C were investigated by a Nano-indentation test. Preliminary microstructural analysis by transmission electron microscopy was performed. Hardness and elastic modulus changes in response to ion irradiation were observed, but synergistic effects on these mechanical properties were not significant. In contrast, microstructural observation of the composites after 10 dpa at 1000°C showed that cavity formation behavior was dependent on the material and the helium or hydrogen implanted mode. The effect of gas elements on cavity formation and the mechanical properties are discussed.