ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Richard J. Colchin, John D. Galambos, Paul L. Goranson, Steven P. Hirshman, Phillip H. Edmonds, John R. Uglum, Jr.
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 350-369
Technical Paper | Magnet System | doi.org/10.13182/FST97-A30838
Articles are hosted by Taylor and Francis Online.
Recently, there have been several proposals to build low-aspect-ratio or spherical tokamaks with plasma currents in the range of 1 MA. These low-aspect-ratio tokamaks employ conventional engineering, except in the central core, which contains the central toroidal field conductors and an ohmic heating solenoid (if present). To achieve low aspect ratios, these components must be engineered to the limits of stress and thermal properties. Solutions are found for the steady-state cooling of the toroidal field conductors. The solenoid, which must be high performance to produce the flux swing required for a 1-MA plasma current, cannot be cooled steady state. The mathematics and procedures necessary to study these issues are given.