ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Illinois lifts moratorium on new large nuclear reactors
New power reactors of any size can be now be sited in the state of Illinois, thanks to legislation signed by Gov. J. B. Pritzker on January 8. The Clean and Reliable Grid Affordability Act (CRGA)—which Pritzker says is designed to lower energy costs for consumers, drive the development of new energy resources in the state, and strengthen the grid—lifts the moratorium on new, large nuclear reactors that Illinois enacted in the late 1980s.
Ji Qiang, Clifford E. Singer, Aaron Levinson
Fusion Science and Technology | Volume 31 | Number 3 | May 1997 | Pages 311-320
Technical Paper | Plasma Engineering | doi.org/10.13182/FST97-A30834
Articles are hosted by Taylor and Francis Online.
A calibrated theory-based tokamak transport model is applied to International Thermonuclear Experimental Reactor (ITER) ignition studies. The reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn can be achieved provided that impurity control makes radiative losses sufficiently small. The ignition probabilities of both ITER EDA and concept design activity parameters are investigated. These results suggest that a high-energy auxiliary heating power significantly <100 MW should heat ITER EDA to ignition.