ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Evelyn M. Fearon, Stephan A. Letts, Leslie M. Allison, Robert C. Cook
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 406-410
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30793
Articles are hosted by Taylor and Francis Online.
In this paper we describe our efforts to produce ICF target capsules with either controlled inner surface roughness or thin metallic diagnostic layers by adapting the decomposable mandrel technique previously developed at LLNL. To modify the capsule's inner surface we laser ablated a pattern on a poly(α-methylstyrene) (PAMS) shell, overcoated it with plasma polymer and then thermally decomposed the inner mandrel to leave the plasma polymer shell with the imprint of the laser ablated mandrel pattern. In this fashion we have been able to produce shells with controlled inner surface bumps. However, these bumps are correlated with outer surface pits. To place a thin metallic diagnostic layer on the inner capsule surface we applied a 50 Å titanium sputter coating to a smooth PAMS shell, overcoated with plasma polymer, and then thermally decomposed the mandrel to leave a plasma polymer shell with the titanium layer on the inner surface. Surface analysis showed that this process resulted in shells with a relatively long wavelength roughness, possibly due to the action of the metallic layer as a permeation barrier.