ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. R. Dittrich, S. W. Haan, S. Pollaine, A. K. Burnham, G. L. Strobel
Fusion Science and Technology | Volume 31 | Number 4 | July 1997 | Pages 402-405
Technical Paper | Eleventh Target Fabrication Specialists' Meeting | doi.org/10.13182/FST97-A30792
Articles are hosted by Taylor and Francis Online.
We describe several ignition capsule designs, for use in the National Ignition Facility. We compare these designs for ablator efficiency, ignition margin, implosion and stability performance. This study includes capsule designs driven by x-ray drive profiles with both 300 eV and 250 eV peak temperatures. All of the 300 eV designs are tuned to implode the DT fuel in a nearly identical manner. Capsule designs consist of an ablator material (CH with Br dopant; polyimid; Be with Cu dopant; and B4C) encasing a layer of solid DT. The dopants alter material opacities sufficiently to 1) shield the DT fuel from preheat effects; and 2) develop an ablation front density profile favorable to implosion stability. B4C has sufficient opacity at 300 eV that a dopant is not necessary. Issues relating to material properties and fabrication are described.