ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Ernest D. Klema, Gerald W. Iseler
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 114-115
Technical Paper | Nuclear Reaction in Solid | doi.org/10.13182/FST96-A30768
Articles are hosted by Taylor and Francis Online.
Three sets of experiments were conducted to investigate the radiation produced by spark discharge on (a) oxidized palladium samples, (b) oxidized palladium samples loaded with hydrogen, and (c) oxidized palladium samples loaded with deuterium. In the first set, no radiation was measured above background; in the second set, 24-keV X rays were observed, and in the third set, 17-keV X rays were produced. The intensities of the hydrogen X rays were measured over a period of 12 days. During this time, the daily fluctuations overshadowed any long-term variation that might be present. The deuterium X rays were followed over a period of 26 weeks. Again, the intensities fluctuated with time, obscuring the long-term trend; in one case, there was a 40% change from one day to the next.