ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
John D. Sheliak, James K. Hoffer, Larry R. Foreman, Evan R. Mapoles
Fusion Science and Technology | Volume 30 | Number 1 | September 1996 | Pages 83-94
Technical Paper | ICF Target | doi.org/10.13182/FST96-A30765
Articles are hosted by Taylor and Francis Online.
A high-resolution optical imaging system and custom-designed image analysis software are used to make surface roughness measurements for deuterium-tritium (D-T) solid layers, equilibrated inside a 2-mm-inside-diameter re-entrant copper cylinder. Several experiments are performed that yield D-T layer thicknesses of between 75 and 139 µm, with equilibration temperatures between 17.4 and 18.8 K. A 1024- × 1024-pixel charge-coupled-device imaging camera, coupled with a Maksutov-Cassegrain long-range microscope, produces a 2.5-µm (single-pixel) image resolution. The error function fitting of the image analysis data produces submicron resolution of the layer interior surface finish. The length scale for the cylinder inner bore is just over 6 mm, and the final layer surface roughness for this length ranges from 3- to 1.7-µm root-mean-square. The feasibility is being explored of using these highly uniform and smooth D-T solid layers inside future targets for inertial confinement fusion reactors to produce surface finishes that will meet target design requirements for the National Ignition Facility. Techniques for improving the D-T solid layer surface finish are examined, limitations of the current D-T cell configuration and fuel mix are discussed, and cell configurations for future experiments are described.