ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Swe-Kai Chen, Chi-Meen Wan, En-Hwei Liu, Shuh-Bair Chu, Chi-Yung Liang, Liq-Ji Yuan, Chi-Chiao Wan
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 302-305
Technical Note | Nuclear Data | doi.org/10.13182/FST96-A30716
Articles are hosted by Taylor and Francis Online.
Microstructural studies were conducted on palladium specimens that were taken from ambient-temperature heavy water and elevated-temperature molten-salt electrolytic experiments. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the surface and interior portions of these specimens. A subgrain structure could be observed by SEM on the surface along the longitudinal direction and on the surface taken from the cross section of the deuterium-charged specimen rod; the thermoelectrochemical etching process was consequently applied to the deuterium-charged specimen rod. A TEM bright field and selected area diffraction pattern technique verified that dislocation cells and subgrains exist in the deuterium-charged specimens. If cold fusion effects exist in the palladium microstructure, which consists of dislocation cells and subgrains, understanding the cold fusion phenomenon in the microstructure is necessary, and pursuant to this understanding, electrolytic experiments of a palladium rod in molten salt and of heavy water may be useful.