ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Swe-Kai Chen, Chi-Meen Wan, En-Hwei Liu, Shuh-Bair Chu, Chi-Yung Liang, Liq-Ji Yuan, Chi-Chiao Wan
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 302-305
Technical Note | Nuclear Data | doi.org/10.13182/FST96-A30716
Articles are hosted by Taylor and Francis Online.
Microstructural studies were conducted on palladium specimens that were taken from ambient-temperature heavy water and elevated-temperature molten-salt electrolytic experiments. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the surface and interior portions of these specimens. A subgrain structure could be observed by SEM on the surface along the longitudinal direction and on the surface taken from the cross section of the deuterium-charged specimen rod; the thermoelectrochemical etching process was consequently applied to the deuterium-charged specimen rod. A TEM bright field and selected area diffraction pattern technique verified that dislocation cells and subgrains exist in the deuterium-charged specimens. If cold fusion effects exist in the palladium microstructure, which consists of dislocation cells and subgrains, understanding the cold fusion phenomenon in the microstructure is necessary, and pursuant to this understanding, electrolytic experiments of a palladium rod in molten salt and of heavy water may be useful.