ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Toshihiko Yamanishi, Mikio Enoeda, Kenji Okuno, Robert H. Sherman
Fusion Science and Technology | Volume 29 | Number 2 | March 1996 | Pages 232-243
Technical Paper | Fusion Fuel Cycle | doi.org/10.13182/FST96-A30710
Articles are hosted by Taylor and Francis Online.
A control method was proposed for the cryogenic distillation column with a feedback stream. The top and bottom flow rates of the column are adjusted for the variation of external feed composition to control product purity. The flow rate of the side stream and the power of the reboiler heater are promptly and linearly changed with the corresponding variation of external feed flow rate. Ordinary columns with no feedback stream are first-order lag systems for the case where the top flow rate is chosen as a manipulated variable. On the other hand, the column with a feedback stream is a second-order lag system even in this case. The parameter-setting method of the proportional-integral (PI) controller was proposed to predict the unstable region in the control of the column. The method can also be applied to the case where the measurement of the controlled variable is accompanied by a long time lag. However, the longer time lag requires a larger integral time, and the larger integral time brings a larger overshoot and slower damping for the controlled variable. For this case, the promptness of the control can be improved by introducing the PI derivative controller.