ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Dennis L. Youchison, Radmir N. Guiniatouline, Robert D. Watson, Jimmie M. McDonald, David S. Walsh, V. I. Beloturov, Igor V. Mazul, Andrey P. Zakharov, Bernice E. Mills, Dale R. Boehme, Vladislav Ilich Savenko
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 599-614
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30701
Articles are hosted by Taylor and Francis Online.
Thermal response and thermal fatigue tests of four 5-mm-thick beryllium tiles on a Russian Federation International Thermonuclear Experimental Reactor (ITER)-relevant divertor mock-up were completed on the electron beam test system at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an oxygen-free high-conductivity copper saddle-block and a dispersion-strengthened copper alloy tube containing a copper porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m2 and surface temperatures near 300°C using 1.4 MPa water at 5 m/s flow velocity and an inlet temperature of 8 to 15°C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m2 and surface temperatures up to 690°C before debonding at 10 MW/m2. A second tile debonded in 25 to 30 cycles at <0.5 MW/m2. However, a third tile debonded after 9200 thermal fatigue cycles at 5 MW/m2, while another debonded after 6800 cycles. Posttest surface analysis indicated that fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. It appears that microcracks growing at the diffusion bond produced the observed gradual temperature increases during thermal cycling. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER-relevant conditions. However, the reliability of the diffusion-bonded joint remains a serious issue.