ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Masanori Araki, Kazuyoshi Sato, Satoshi Suzuki, Masato Akiba
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 519-528
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30695
Articles are hosted by Taylor and Francis Online.
Development of high-heat-flux components such as the divertor plate of fusion experimental machines is essential for removal of high heat loads with heating on one side. For this purpose, the authors machined a tube with an inside wall like a nut, namely, a screw tube, to enhance heat transfer efficiency and simplify the machining process. The screw tube is compared with a swirl tube, originally developed by Oak Ridge National Laboratory, and the Hypervapotron, developed by Joint European Torus (JET). The spirally machined inside wall can enlarge the heat transfer area and make a little vortex flow only close to the wall. The performance of the screw tube is characterized by a critical-heat-flux experiment that uses water flow velocities ranging from 4 to 20 m/s with a water inlet pressure of 1.0 MPa. As a result, the screw tube has a higher incidence of CHFs compared with the smooth tube and the Hypervapotron and performs similarly to the swirl tube at identical flow velocities.