ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Diethelm Schroeder-Richter
Fusion Science and Technology | Volume 29 | Number 4 | July 1996 | Pages 468-486
Technical Paper | Blanket Engineering | doi.org/10.13182/FST96-A30691
Articles are hosted by Taylor and Francis Online.
On the basis of a new hypothesis of thermodynamic states (the superheated wall layer is not metastable but saturated at locally elevated pressure), an analytical estimation is presented of the whole boiling curve [except critical heat flux (CHF), but fixed at this point, known by experiments or correlation]. The curvature of the boiling curve (bubbly flow) is deduced from thermodynamics of irreversible processes. The wall temperature corresponding to departure from nucleate boiling is calculated from balances of momentum at the interfaces, based on the assumption that the speed of sound may be a limit for maximum evaporation mass flux and thereby heat flux, i.e., CHF. Heat flux during transition boiling is determined from balance of energy at the rewetting front. At the Leidenfrost point, a minimum heat flux is neglected. Thus, Leidenfrost temperature, as well as wall temperature at CHF, can be calculated analytically without using empirical coefficients. Heat flux of bubbly flow and transition boiling can be matched at any empirical CHF point. All these results are determined from properties of state alone, i.e., the models can be verified for all fluids including water and liquid metals (so far at moderate heat fluxes). Especially the latter two fluids are of interest for high-heat-flux application, and the precondition of low void fraction is expected to be fulfilled.