ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. J. La Haye
Fusion Science and Technology | Volume 29 | Number 1 | January 1996 | Pages 126-133
Technical Paper | Divertor System | doi.org/10.13182/FST96-A30662
Articles are hosted by Taylor and Francis Online.
Nonaxisymmetric error fields arising from departures of the coil systems from axisymmetry can pose serious problems for the tokamak divertor. The X points of the divertor are particularly sensitive to being shifted by n ≠ 0 error fields; toroidal “bundle diverting” or bunching of heat flux coming from the core of the tokamak can produce hot spots on carefully designed divertor structures. Toroidal variation of the angle of incidence on the divertor by the n ≠ 0 error field can also locally peak the heat flux. Multiple field line tracing of a typical diverted Tokamak Physics Experiment (TPX) configuration with nonconcentric poloidal field (PF) coils is used to predict that if the toroidal variation of the peak divertor heat flux is to be kept to within ±25%, the principal PF coils responsible for the diverting must be aligned to ±2 mm of concentricity with the toroidal field.