ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Z. Youssef, A. Kumar, M. A. Abdou, Y. Oyama, C. Konno, F. Maekawa, Y. Ikeda, K. Kosako, M. Nakagawa, T. Mori, H. Maekawa
Fusion Science and Technology | Volume 28 | Number 2 | September 1995 | Pages 388-432
Technical Paper | Fusion Neutronics Integral Experiments — Part II / Blanket Engineering | doi.org/10.13182/FST95-A30652
Articles are hosted by Taylor and Francis Online.
Many fusion integral experiments were performed during the last decade within a well-established collaboration between the United States and Japan on fusion breeder neutronics. These experiments started in 1983 and aimed at verifying the prediction accuracy of key neutronics parameters based on the state-of-the-art neutron transport codes and basic nuclear databases. The tritium production rate (TPR) has the prime focus among other reactions. The experimental and calculational data sets of local TPR in each experiment were interpolated to give an estimate of the prediction uncertainty, ui, and the standard deviation, δi of the line-integrated TPR, a quantity that is closely related to the total breeding ratio (TBR) in the test assembly. A novel methodology developed during the collaboration was applied to arrive at estimates to design safety factors that fusion blanket designers can use to ensure that the achievable TBR in a blanket does not fall below a minimum required value. Associated with each safety factor is a confidence level, designers may choose to have, that calculated TPR will not exceed the actual measured value. Higher confidence levels require larger safety factors. Tabular and graphical forms for these factors are given, as derived independently for TPR from Li-6 (T6), Li-7 (T7), and natural lithium (Tn). Furthermore, distinction was made between safety factors based on the technique applied, discrete ordinates methods, and Monte Carlo methods in the U.S. calculations, JAERI's calculations, and in both calculations considered simultaneously. The derived factors are applicable to TPR in Li2O breeding material; nevertheless, the results can be used as initial guidance to assist in resolving the tritium self-sufficiency issue in other breeding media.