ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Chikara Konno, Yukio Oyama, Fujio Maekawa, Yujiro Ikeda, Kazuaki Kosako, Hiroshi Maekawa, Mohamed A. Abdou, Edgar F. Bennett, Anil Kumar, Mahmoud Z. Youssef
Fusion Science and Technology | Volume 28 | Number 2 | September 1995 | Pages 347-365
Technical Paper | Fusion Neutronics Integral Experiments — Part II / Blanket Engineering | doi.org/10.13182/FST95-A30650
Articles are hosted by Taylor and Francis Online.
Neutronics experiments on annular blanket systems that use a pseudoline source are performed. The shape of the annular blanket system is a rectangular parallelepiped (1300 × 1300 mm2 and 2040 mm long) with an inner cavity of 425.5 × 425.5 mm2 and 2040 mm long. The annular blanket consists of a 15-mm-thick first wall (Type 304 stainless steel) and 406-mm-thick breeder zone (inner lithium oxide and outer lithium carbonate). Deuterium-tritium neutron sources are set at the center of the inner cavity of the annular blanket system, and the pseudoline source is obtained by oscillating the annular blanket system back and forth in a 2-m span. Three annular blanket configurations are examined: the reference blanket, a blanket covered with 25-mm-thick graphite armor, and an armor blanket with a large opening (376 × 425.5 mm). The neutronics parameters of tritium production rate, neutron spectrum, and activation reaction rate are measured with specially developed techniques, including a multidetector data acquisition system, a spectrum weighting function method, and a ramp-controlled high-voltage system. Measured parameters are compared among three different configurations of the experimental system and also with the results of a closed geometry with a point source. A calculation with the GMVP Monte Carlo code that uses the JENDL-3 nuclear data library is performed and shows agreement within 10%. The current experiment provides unique data for a higher step of benchmark to test the ability of neutronics design calculations for a realistic tokamak reactor.