ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
K. Hasegawa, K. Horii, M. Matsuyama, K. Watanabe
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1497-1502
Tritium Waste Management and Discharge Control | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30624
Articles are hosted by Taylor and Francis Online.
The rate of the UV-stimulated HT oxidation was studied in H2(HT)-O2-O3 atmospheres with excess O3. The concentration of HTO increased linearly with UV irradiation time. The formation rate of HTO was estimated to be 3.4 × 102 Bq cm−3 s−1, which was about 14000 times greater than that of the UV-stimulated HT oxidation in the H2(HT)-O2 atmosphere. Namely the excess O3 greatly assisted the UV-stimulated HT oxidation. The HTO formation obeyed the half order kinetics to hydrogen pressure and 0.7 order with respect to photon flux. Computer simulation consisting of 33 elementary reactions was employed to make clear the mechanism of the HT oxidation. The computer simulation reproduced the same hydrogen pressure and photon flux dependences as the experimental results. It was revealed that the main path for HTO formation is as follows: 1) HT oxidation is initiated by photolysis of O3 to O(1D) radicals; 2) O(1D) radicals react with H2O(HT) to form OH(OT) radicals; 3) OH(OT) radicals produce H2O(HTO) by the reaction with H2(HT). On the basis of computer analysis, it is concluded that the considerable increase in the rate of HTO formation is due to the increase in O(1D) production in the presence of O3. The present results suggest that the O3-assisted UV-stimulated HT oxidation is expected to be applicable to non-catalytic oxidation of tritium in thermonuclear fusion reactors.