ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
†‡A N Perevezentsev, †C Bell, †R Lässer, ‡L A Rivkis
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1404-1409
Tritium Storage, Distribution, and Transportation | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30608
Articles are hosted by Taylor and Francis Online.
Air or nitrogen ingress accident scenarios into JET tritium storage containers, filled with uranium or intermetallic compound (IMC) hydrides, are discussed based on the experimentally determined kinetics of the reaction of these hydrides with air, O2 and N2. Reaction of uranium with air can occur at room temperature. For the initiation of the reactions of uranium with N2 or of some intermetallic compounds with air, elevated temperatures are required. Temperature rises of the metal hydrides due to air ingress are estimated for various cases. Modern tritium storage containers are protected against air ingress by intermediate and secondary containments which can be either evacuated or filled with inert gas. Therefore, air ingress can only occur due to double failure: failure of secondary containment and process containment at the same time. At JET, the secondary containments are filled with N2. However, even for N2, temperature increases are expected during the ingress into uranium beds (U-beds) for particular scenarios. It is shown that the JET design would not fail in this event. The calculation also shows that the smallest temperature rises during air, O2 or N2 ingress are expected for a getter bed design with free space above the metal getter layer for the gas to flow from inlet to outlet tube, because the reaction with the metal powder is limited by the diffusion rate of the gas through the powder. Estimates with ZrCo as getter are also made.