ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
†‡A N Perevezentsev, †C Bell, †R Lässer, ‡L A Rivkis
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1404-1409
Tritium Storage, Distribution, and Transportation | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30608
Articles are hosted by Taylor and Francis Online.
Air or nitrogen ingress accident scenarios into JET tritium storage containers, filled with uranium or intermetallic compound (IMC) hydrides, are discussed based on the experimentally determined kinetics of the reaction of these hydrides with air, O2 and N2. Reaction of uranium with air can occur at room temperature. For the initiation of the reactions of uranium with N2 or of some intermetallic compounds with air, elevated temperatures are required. Temperature rises of the metal hydrides due to air ingress are estimated for various cases. Modern tritium storage containers are protected against air ingress by intermediate and secondary containments which can be either evacuated or filled with inert gas. Therefore, air ingress can only occur due to double failure: failure of secondary containment and process containment at the same time. At JET, the secondary containments are filled with N2. However, even for N2, temperature increases are expected during the ingress into uranium beds (U-beds) for particular scenarios. It is shown that the JET design would not fail in this event. The calculation also shows that the smallest temperature rises during air, O2 or N2 ingress are expected for a getter bed design with free space above the metal getter layer for the gas to flow from inlet to outlet tube, because the reaction with the metal powder is limited by the diffusion rate of the gas through the powder. Estimates with ZrCo as getter are also made.