ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Work-study master’s program in nuclear offered in Italy
Energy company Ansaldo Energia recently hosted a ceremony at its headquarters in Genoa, Italy, marking the launch of the Master in Technologies for Nuclear Power Plants program, which it developed in collaboration with Politecnico di Milano. A call for graduates in engineering, physics, and chemistry issued in May attracted more than 300 applications, 26 of which were selected for the program.
A C Bell, J L Hemmerich, R Lässer, N Bainbridge, G Bishop, D Brennan, C Caldwell-Nichols, J Campbell, A Dearden, B Grieveson, G Jones, J Lupo, J Mart, A Perevezentsev, N Skinner, R Stagg, K Walker, R Warren, J Yorkshades
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1301-1306
Design, Operation, and Maintenance of Tritium System | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30590
Articles are hosted by Taylor and Francis Online.
The Joint European Torus (JET) carried out the first preliminary experiment with a deuterium-tritium plasma in 1991. This utilised an on-site inventory of 0.25g. The future experimental programme for the JET machine includes two discrete phases using plasmas fuelled by deuterium and tritium. The first of these, in mid-1996, will generate around 2 × 1020 neutrons and require a site inventory of a few grams of tritium. The second is proposed to take place in 1999 if an extension to the JET project from 1996 is granted. This will require a few tens of grams of tritium and will generate up to 5 × 1021 neutrons. The JET Active Gas Handling System has been constructed to enable tritium to be recovered from the plasma exhaust and stored for re-injection. The design also minimises tritium discharges to the environment. It is currently being commissioned to meet the above programme and has been modified to take into account a new requirement for operation over extended periods during maintenance and D-D operation with tritium contaminated plasma exhaust. Commissioning of the Active Gas Handling System consists of inactive, trace tritium (∼40TBq) and full tritium (<3g) phases. The experience and main results of inactive commissioning are presented and the status of tritium commissioning is reviewed.