ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Futaba Ono, Michio Yamawaki, Satoru Tanaka
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1250-1255
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30581
Articles are hosted by Taylor and Francis Online.
Regrowth in tritium desorption from type 316 stainless steel, copper and borosilicate glass was studied. It was found that the tritium, which was penetrated into materials by long term contact, could not be easily desorbed by a stream of nitrogen gas (dry, wet or 10 % H2) at room temperature. The ratio of the tritium amount desorbed from surface by each purging to the tritium concentration in the gaseous phase under the sorption /desorption equilibrium on the surface was found to be constant through the repeated desorption. The amount of tritium desorbed by each gas purging was found to decrease by repeated desorption.