ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Futaba Ono, Michio Yamawaki, Satoru Tanaka
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1250-1255
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30581
Articles are hosted by Taylor and Francis Online.
Regrowth in tritium desorption from type 316 stainless steel, copper and borosilicate glass was studied. It was found that the tritium, which was penetrated into materials by long term contact, could not be easily desorbed by a stream of nitrogen gas (dry, wet or 10 % H2) at room temperature. The ratio of the tritium amount desorbed from surface by each purging to the tritium concentration in the gaseous phase under the sorption /desorption equilibrium on the surface was found to be constant through the repeated desorption. The amount of tritium desorbed by each gas purging was found to decrease by repeated desorption.