ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Masabumi Nishikawa, Nobuyuki Nakashio, Toshiharu Takeishi, Satoshi Matsunaga, Kiyoteru Kuroki
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1233-1238
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST28-1233
Articles are hosted by Taylor and Francis Online.
Sorption behavior of tritium to isotropic graphite is discussed including solubility, diffusivity in the bulk of isotropic graphite and sorption capacity of hydrogen isotopes on the surface of isotropic graphite. The solubility and the diffusion coefficient of hydrogen isotopes in the graphite are obtained using the breakthrough method in the temperature range of 673–1273K and the activation energy of diffusivity is about 100kJ/mol. The sorption capacity of tritium on the graphite surface is also obtained by the breakthrough method using tritiated water in nitrogen gas flow. Tritium is captured on the graphite surface by isotope exchange reaction between tritium in gas flow and hydrogen in hydroxyl group on the graphite surface.These hydrogen atoms in hydroxyl group can easily exchange with other hydrogen isotopes in gas flow though they cannot be easily released from the graphite by drying or evacuating.