ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Kaname Kizu, Keiji Miyazaki, Tetsuo Tanabe
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1205-1210
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30573
Articles are hosted by Taylor and Francis Online.
A precise hydrogen permeation experiment for beryllium was conducted at a temperature ranging from 735 to 1000 K under hydrogen gas pressure of 101 to 103 Pa. Diffusion coefficient and permeation coefficient were determined from the steady state penneation and time transient penneation independently. The steady state penneation rate was proportional to the square root of H2 pressure and the time sequence of penneation rate agreed well with theoretical one, indicating that the penneation controlled by bulk diffusion. The temperature dependencies of the penneation coefficients (Φ) and diffusion coefficients (D) were respectively,Φ=(1.0±0.1)×10−6exp[−73±20(kJ/mol)/RT] (mol·m−1·s−1·Pa1/2),D=(1.3±0.1)×10−7exp[59±20(kJ/mol)/RT] (m2·s−1).Solubility calculated from the relation Φ=DS wasS=7.1 exp[−14(kJ/mol)/RT] (mol·m−3·Pa−1/2).