ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kaname Kizu, Keiji Miyazaki, Tetsuo Tanabe
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1205-1210
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30573
Articles are hosted by Taylor and Francis Online.
A precise hydrogen permeation experiment for beryllium was conducted at a temperature ranging from 735 to 1000 K under hydrogen gas pressure of 101 to 103 Pa. Diffusion coefficient and permeation coefficient were determined from the steady state penneation and time transient penneation independently. The steady state penneation rate was proportional to the square root of H2 pressure and the time sequence of penneation rate agreed well with theoretical one, indicating that the penneation controlled by bulk diffusion. The temperature dependencies of the penneation coefficients (Φ) and diffusion coefficients (D) were respectively,Φ=(1.0±0.1)×10−6exp[−73±20(kJ/mol)/RT] (mol·m−1·s−1·Pa1/2),D=(1.3±0.1)×10−7exp[59±20(kJ/mol)/RT] (m2·s−1).Solubility calculated from the relation Φ=DS wasS=7.1 exp[−14(kJ/mol)/RT] (mol·m−3·Pa−1/2).