ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Valery V. Fedoro, Vasiliy I. Pokhmursky, Elena V. Dyomina, Marina D. Prusakova, Natalia A. Vinogradova
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 1153-1158
Tritium Properties and Interaction with Material | Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30563
Articles are hosted by Taylor and Francis Online.
The study of hydrogen diffusion parameters in austenitic steels EP-838, Cr12Mn20W, 316 SS, 12Cr18Ni10Ti was carried out. Temperature dependences of permeability, diffusion coefficients and hydrogen dissolution were determined and their variation with the phase and structure composition of the steel were analyzed. It is shown that change of alloy composition, thermal treatment in hydrogen and modification of surface by nitriding, oxidizing and by irradiation with H+ and N+ ions can lead to a decrease in hydrogen permeability and thus reduce hydrogen isotope losses through the thermonuclear reactor first wall.