ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
A. Trivedi, R.B. Richardson, D. Galeriu
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 982-987
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30533
Articles are hosted by Taylor and Francis Online.
Tritiated watero (HTO) represents the mosl important occupational and environmental exposures to tritium, as far as radiation protection is concerned We have studied the dynamics of HTO and organically bound tritium* (OBT) in urine, feces and blood from male workers at 100–300 d following an acute intake of HTO. Blood and cumulative 24 h urine and fecal samples were collected and analyzed for HTO and OBT. The activity concentrations oi HTO in urine and HTO in feces were in equilibrium and were representative of HTO in the body water (HTO in blood). The ratio of bound tritium per gram hydrogen (Bq·H−1) in organic matter in feces (OBTfeces) to urine (OBTurine) was 1.0 ± 0.1. Similarly, the ratios of OBTblood to OBTurine and OBTblood to OBTfeces were 0.9 ± 0.2 and 1.1 ± 0.2, respectively. These results suggest that, providing an equilibrium condition exists, a measurement of the tritium activity per unit mass of organic matter in urine or feces can provide an assessment of the specific activity of tritium in the organic fraction ol the soft tissue. The activity concentrations of HTO and OBT in urine samples, from a few days up to 300 d post-exposure, were examined for the clearance kinetics of HTO in urine and OBT in urine. The early presence of OBT in urine indicated that a portion of tritium from the ingested HTO is rapidly fixed into organic constituents of the body. The half-life for the longer-term component of OBT in urine is comparable to the half-life for the longer-term component of HTO in urine. This close relationship between the longer-term excretion of HTO in urine and OBT in urine suggests that most of the HTO produced in its longer-term component is a by-product of metabolized OBT. This work has demonstrated that OBT is excreted in urine in all examinations, up to 300 d post-exposure to HTO, and that a fraction of the metabolized OBT is also excreted in feces.