ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
L. Rodrigo, M.J. Ivanco, J.W. Goodale, J.A. Senohrabek, L.K. Jones, L.M. Phillipi
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 940-945
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30526
Articles are hosted by Taylor and Francis Online.
The quantitative significance of surface-contamination levels determined by different methods was assessed by carrying out measurements using the wipe-assay method and a commercial surface-contamination monitor (Whitlock Vacuum Scintillation Counter (VSC)). The results were compared to the total tritium desorbed from the sample. Simple correlations between these measurements were not found. Laser-assisted desorption methods are currently being investigated to measure total tritium on surfaces. Preliminary results obtained with a Nd:YAG laser (532 nm) are reported. Only water vapor and CO2 were found in the gas released under laser irradiation by mass spectroscopy. Approximately 65–95% of the surface tritium could be desorbed from all metal samples investigated.