ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Work-study master’s program in nuclear offered in Italy
Energy company Ansaldo Energia recently hosted a ceremony at its headquarters in Genoa, Italy, marking the launch of the Master in Technologies for Nuclear Power Plants program, which it developed in collaboration with Politecnico di Milano. A call for graduates in engineering, physics, and chemistry issued in May attracted more than 300 applications, 26 of which were selected for the program.
Kiriko Miyamoto, Ken-ichi Kimura, Shozo Hongo
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 910-917
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30521
Articles are hosted by Taylor and Francis Online.
For purpose of dose estimation a transfer model of tritium as well as some other important radionuclides that occur in the environment is being developed in our institute. Tritium is considered to be a significant source of internal exposure for man. Our present work is focussed on designing a tritium compartment model of the local hydrosphere. Our concept is based on the seven-box model of the hydrological cycle on a global scale that was proposed by National Council on Radiation Protection and Measurements (NCRP). To estimate the impact of nuclear facilities in a local area, geographical and geological conditions need to be taken into consideration. Therefore in present work, groundwater reservoir was divided into three layers and then the transfer coefficients were determined by analyzing time-series data on fallout tritium concentrations in the local environmental water. The most important difference between the NCRP model and ours is that the tritium metabolism of aquatic plants, invertebrates and fish is taken into consideration. For these aquatic organisms there are two sub-compartments, namely tissue free water tritium (TFWT) and organically bound tritium (OBT). We developed this model because the living organisms in such aquatic systems are utilized as fishery products by the Japanese people. The effect of the fast intake of HTO by aquatic plants was demonstrated by a preliminary application of this model.