ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Kiriko Miyamoto, Ken-ichi Kimura, Shozo Hongo
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 910-917
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30521
Articles are hosted by Taylor and Francis Online.
For purpose of dose estimation a transfer model of tritium as well as some other important radionuclides that occur in the environment is being developed in our institute. Tritium is considered to be a significant source of internal exposure for man. Our present work is focussed on designing a tritium compartment model of the local hydrosphere. Our concept is based on the seven-box model of the hydrological cycle on a global scale that was proposed by National Council on Radiation Protection and Measurements (NCRP). To estimate the impact of nuclear facilities in a local area, geographical and geological conditions need to be taken into consideration. Therefore in present work, groundwater reservoir was divided into three layers and then the transfer coefficients were determined by analyzing time-series data on fallout tritium concentrations in the local environmental water. The most important difference between the NCRP model and ours is that the tritium metabolism of aquatic plants, invertebrates and fish is taken into consideration. For these aquatic organisms there are two sub-compartments, namely tissue free water tritium (TFWT) and organically bound tritium (OBT). We developed this model because the living organisms in such aquatic systems are utilized as fishery products by the Japanese people. The effect of the fast intake of HTO by aquatic plants was demonstrated by a preliminary application of this model.