ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Work-study master’s program in nuclear offered in Italy
Energy company Ansaldo Energia recently hosted a ceremony at its headquarters in Genoa, Italy, marking the launch of the Master in Technologies for Nuclear Power Plants program, which it developed in collaboration with Politecnico di Milano. A call for graduates in engineering, physics, and chemistry issued in May attracted more than 300 applications, 26 of which were selected for the program.
Hikaru Amano
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 797-802
Tritium Safety | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30502
Articles are hosted by Taylor and Francis Online.
Uptake of atmospheric tritiated methane by plants was examined in a preliminary study. Several potted plants which differ in their photosynthetic processes were exposed to tritiated methane in an enclosed chamber. The plants were exposed to a total of 185 MBq of tritium in the form of methane. The methane carrier gas was 630 ppm. The potted plants exposed to tritiated methane included edible Chinese mustards (Komatsuna in Japanese), Indian corns, cactuses. Each pot was covered with a plastic bag to prevent the reaction of methane gas with the potted soil. Only the leaves and branches were exposed to tritiated methane. Tritium was detected in the exposed leaves of C3 and C4 plants, not only in the water soluble form but also in the organically bound tritium form. There seems to be no difference in the transfer mechanism of tritium from methane to C3 and C4 plants. CAM plants which have different photosynthetic processes, did not accumulate HTO. This means that the transfer of tritiated methane to C3 and C4 plants is general phenomena not depending on the difference of the photosynthetic processes among the C3 and C4 plants.