ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Dino A. Spagnolo, Alistair I. Miller
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 748-754
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30494
Articles are hosted by Taylor and Francis Online.
The Combined Electrolysis Catalytic Exchange (CECE) process, utilizing AECL's wetproofed catalyst, is ideally suited for extracting tritium from water because of its high isotopic separation factor and near-ambient operating conditions. Several CECE options are compared with the more conventional DW-VPCE arrangements for heavy water upgrading and detritiation of CANDU nuclear reactors and for detritiation of fusion facilities such as ITER. For both applications, CECE offers a more economical alternative over conventional technology. Experimental data on catalyst activity and lifetime are also presented and past commercial applications of the AECL catalyst are reviewed. AECL has recently committed to assembly of a CECE upgrading/detritiation demonstration facility.