ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Lu Guangda, Jiang Guoqiang, Shen Cansheng
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 672-675
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30481
Articles are hosted by Taylor and Francis Online.
The Thermal Cycling Absorption Process (TCAP), is a semicontinuous gas chromatographic process for hydrogen isotope separation by which the experiment for hydrogen-deuterium separation has been carried out. The main operating parameters for optimum separation were obtained. On manual operation conditions the concentrations of product and raffmate gas were batter than 99.5% simultaneously at a feed rate of 12.0% for a 1:1 hydrogen-deuterium mixture. Besides, TCAP is a good process for trace heavier isotope enriching from hydrogen. The concentration of deuterium can be reduced from 0.5% to less than 50ppm in hydrogen in ten cycles.