ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
William Kuan, Mohamed A. Abdou, R. Scott Willms
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 664-671
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30480
Articles are hosted by Taylor and Francis Online.
Dynamically simulating the fuel cycle in a fusion reactor is crucial to developing a better understanding of the safe and reliable operation of this complex system. In this work, we propose a tritium processing system for ITER'S plasma exhaust. The dynamic simulation of this proposed system is then performed with the TRUFFLES (TRitiUm Fusion Fuel cycLE dynamic Simulation) model. The fuel management, storage, and fueling operations are developed and coupled with previous cryopump and fuel cleanup unit subsystems to fully realize the complete torus exhaust flow cycle. Results show that tritium inventories will vary widely depending upon reactor operation, individual subsystem and unit operation designs. A diverse collection of batch-controlled subsystems with changes in their processing parameters are simulated in this work. In particular, the effects from the fuel management subsystem's fuel reserve and tank switching times are quantified using sensitivity studies.