ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Satoshi Konishi, Masahide Hara, Kenji Okuno
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 652-657
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30478
Articles are hosted by Taylor and Francis Online.
Some variations and extensions of a Fuel Cleanup System based on the combination of palladium diffuser and a vapor electrolysis cell were studied to improve the flexibility to accept broader range of flow rate, gas contents and operation modes. Processing of inert gas - CH4, H2, He2O mixtures in a closed loop showed satisfactory detritiation, with the processing of methane by catalytic steam reforming and oxidation, and electrolytic oxidation. The decomposition of hydrocarbon on the anode side of the ceramic electrolysis cell was tested to study the feasibility as an oxidizer. The zirconia ceramic membrane with Pt electrode are tested with methane at the anode for oxidation, and water vapor on the cathode for reduction. The cell converted methane to carbon dioxide and vapor with high efficiency and simultaneously decomposed water vapor to hydrogen. This application of the cell simplifies the process, and eliminates the use of catalyst and oxygen gas. A versatile fuel cleanup that eliminates most of previos concerns and improves the performance is proposed.