ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Work-study master’s program in nuclear offered in Italy
Energy company Ansaldo Energia recently hosted a ceremony at its headquarters in Genoa, Italy, marking the launch of the Master in Technologies for Nuclear Power Plants program, which it developed in collaboration with Politecnico di Milano. A call for graduates in engineering, physics, and chemistry issued in May attracted more than 300 applications, 26 of which were selected for the program.
Satoshi Fukada, Katsuhiro Fuchinoue, Masabumi Nishikawa
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 608-613
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30470
Articles are hosted by Taylor and Francis Online.
A continuous hydrogen isotope separation system using twin beds of metals or alloys is here proposed. The isotope separation system called a twin-bed periodically counter-current flow (TB-PCCF) is analytically and experimentally investigated. Palladium and LaNi4.7Al0.3 were selected based on experimental data of the isotope separation factor and the isotopic exchange rate. Numerical calculations by a plate model revealed effectiveness of the TB-PCCF method which is composed of an enriching column packed with Pd particles and a stripping column packed with LaNi4.7Al0.3 particles. A preliminary experiment was performed at the condition where absorption and desorption cycles are repeated between room temperature and 473K for Pd and 363K for LaNi4.7Al0.3 at the total reflux, and it showed possibility of the hydrogen isotope separation.