ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Mikio Enoeda, Yoshinori Kawamura, Kenji Okuno, Ken-ichi Tanaka, Mitsuru Uetake, Masabumi Nishikawa
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 591-596
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30467
Articles are hosted by Taylor and Francis Online.
Experimental results showed that Q2 gas was adsorbed effectively by CMSB on an early stage of breakthrough even though CH4 exists in the inlet gas. Particularly, in the case of Q2 with low concentration of CH4, the break through curve of Q2 showed almost the same curve as in the case of pure Q2 adsorption. However, CH4 gas spilled over adsorbed Q2 in the course of CH4 break-through. This means that the CMSB will eventually lose the ability to adsorb Q2 in the final stage of adsorption. The critical time when the CMSB loses the adsorption ability depends on the inlet CH4 concentration. Analysis of the results showed that the adsorption of Q2 and CH4 mixture can be roughly described by assuming the multi-component adsorption equations for Q2 and CH4 using Langmuir's equations. It was certified that the analysis model described and predicted the experimental observations very well.