ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Anfield Energy to start construction of Utah uranium mine
British Columbia-based Anfield Energy has scheduled a groundbreaking on November 6 at its uranium and vanadium Velvet-Wood mine, located in southeastern Utah’s Lisbon Valley. According to Corey Dias, the company’s CEO, it will be "more than a groundbreaking—it’s a bold declaration of Anfield’s readiness to help fuel the American nuclear renaissance.”
D.G. Bellamy (1-416-207-6378), J.R. Robins (1-416-207-6083), K.B. Woodall (1-416-207-6835), S.K. Sood (1-416-592-5501), P. Gierszewski (1-905-823-4717)
Fusion Science and Technology | Volume 28 | Number 3 | October 1995 | Pages 525-529
Tritium Processing | Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995 | doi.org/10.13182/FST95-A30456
Articles are hosted by Taylor and Francis Online.
A new experimental system has been constructed to test ITER relevant distillation columns and related cryogenic distillation (CD) hardware and control systems. These columns are used to purify tritium in the ITER fuel cycle. The ITER test column reported here has a diameter of about 30 mm and a packed length of approximately 150 cm. It can operate with a hydrogen isotope (Q2) boilup of about 60 watts. Two 30 W refrigeration systems were coupled together to deliver as close as possible to 60 watts of cooling. The separation performance of the column was determined by accurately measuring the tritium concentration in the feed and product streams using a mixture of D2 and DT gas. Conditions which yield a column theoretical plate height as low as 2.05 cm. and a plate inventory of 0.118 moles are reported. The goal of this research program is to measure the performance of ITER relevant columns, packings, condensers, and reboilers in order to minimize hydrogen (Q2) and tritium holdup and to show that ITER objectives can be met with smaller diameter and lower tritium inventory columns than have previously been considered.