ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Zvi Shkedi, Robert C. McDonald, John J. Breen, Stephen J. Maguire, Joe Veranth
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1720-1731
Technical Paper | Electrolytic Device | doi.org/10.13182/FST95-A30436
Articles are hosted by Taylor and Francis Online.
Apparent excess heat is observed in light water electrolytic cells containing a variety of nickel cathodes, a platinum anode, and an electrolyte of K2CO3 in H2O. High-accuracy calorimetric measurements show apparent excess heat in the range of 15 to 37% of input power if a 100% Faraday efficiency is assumed for H2 and O2 gas release. The H2 and O2 gases released during electrolysis are recombined in a vessel external to the cell, and the quantity of recombined H2O is compared with the quantity of H2O expected from 100% efficient electrolysis. The measured Faraday efficiency is shown to be significantly <100%, and conventional chemistry can account for the entire amount of observed apparent excess heat to within an accuracy of better than 0.5%.