ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
American Nuclear Society on the firing of NRC Commissioner Hanson
Washington, D.C. — The American Nuclear Society (ANS) issued the following statement:
"A competent, effective, and fully staffed U.S. Nuclear Regulatory Commission is essential to the rapid deployment of new reactors and advanced technologies. The arbitrary removal of commissioners without due cause creates regulatory uncertainty that threatens to delay America’s nuclear energy expansion."
B. Grant Logan, Ralph W. Moir, Myron A. Hoffman
Fusion Science and Technology | Volume 28 | Number 4 | November 1995 | Pages 1674-1696
Technical Paper | Economic | doi.org/10.13182/FST95-A30434
Articles are hosted by Taylor and Francis Online.
The economy of scale for multiunit inertial fusion energy (IFE) power plants is explored based on the molten salt HYLIFE-II fusion chamber concept, for the purpose of producing lower cost electricity and hydrogen fuel. The cost of electricity (CoE) is minimized with a new IFE systems code IFEFUEL5 for a matrix of plant cases with one to eight fusion chambers of 250 to 2000-MW(electric) net output each, sharing a common heavy-ion driver and target factory. Improvements to previous HYLIFE-II models include a recirculating induction linac driver optimized as a function of driver energy and rep-rate (average driver power), inclusion of beam switchyard costs, a fusion chamber cost scaling dependence on both thermal power and fusion yield, and a more accurate bypass pump power scaling with chamber rep-rate. A CoE less than 3 ¢/kW(electric)·h is found for plant outputs greater than 2 GW(electric), allowing hydrogen fuel production by water electrolysis to provide lower fuel cost per mile for higher efficiency hydrogen engines compared with gasoline engines. These multiunit, multi-GW(electric) IFE plants allow staged utility plant deployment, lower optimum chamber reprates, less sensitivity to driver and target fabrication costs, and a CoE possibly lower than future fission, fossil, and solar competitors.