ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Y. Oyama, C. Konno, Y. Ikeda, F. Maekawa, H. Maekawa, S. Yamaguchi, K. Tsuda, T. Nakamura, M. A. Abdou, E. F. Bennett, R. F. Mattas, K. G. Porges, M. Z. Youssef
Fusion Science and Technology | Volume 28 | Number 1 | August 1995 | Pages 56-73
Technical Paper | Fusion Neutronics Integral Experiments — Part I / Blanket Engineering | doi.org/10.13182/FST95-A30401
Articles are hosted by Taylor and Francis Online.
The experiments performed in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics are designed with consideration of geometrical and material configurations. The general guide that is used to design the engineering-oriented neutronics experiment, which uses an accelerator-based 14-MeV neutron source, is discussed and compared with neutronics characteristics of the reactor models. Preparation of the experimental assembly, blanket materials, and the neutron source is described. A variety of techniques for measuring the nuclear parameters such as the tritium production rate are developed or introduced through the collaboration as a basis of the neutronics experiments. The features of these techniques are discussed with the experimental error and compared with each other.