ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
N. Aslan, T. Kammash
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 184-191
Technical Paper | ICF Target | doi.org/10.13182/FST94-A30342
Articles are hosted by Taylor and Francis Online.
Interest in the use of magnetized targets to enhance energy multiplication in inertial confinement fusion has recently been revived after being ignored for some time. The addition of an externally applied magnetic field to a fuel volume to reduce thermal conduction losses represents one approach. The other approach is the subject examined, namely, self-generated fields created inside a target by beams that enter the pellet through a hole. The field, current, and pressure profiles in a two-region spherical plasma that might be representative of the magnetically insulated inertial confinement fusion concept are calculated in a self-consistent manner. The existence of a quasi-equilibrium soon after the formation of the plasma in the target is assumed, the appropriate magnetohydrodynamic equations in a multiregion plasma configuration are solved, and the parameters for such an equilibrium are established. An energy integral is employed to study the stability of these configurations against azimuthally symmetric perturbations, and the results are applied to some experimental as well as reactor-like systems. For certain configurations and input energies, such systems can be stable for the length of the burn.