ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sergei Zimin
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 153-167
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30339
Articles are hosted by Taylor and Francis Online.
Although neutron-induced activation in a fusion reactor is a nonlinear problem whose solution requires the use of both neutron transport and activation codes, a simplified analytical approach to bismuth and polonium build-up in lead is proposed to estimate the polonium inventory and the related biological hazards of LiPb-bearing blankets. All neutronic reactions of polonium build-up in lead and in its bismuth impurities are surveyed and discussed. The contribution of the different possible chains to the build-up of polonium is evaluated. A set of differential equations for the densities of 209Bi and 210Po isotopes in the lead is worked into simplified, easy-to-use expressions. These analytical formulas obtained for the densities can be used for the estimation of both the bismuth and the polonium densities after any reactor operation time and allow identification of the build-up mechanisms of those isotopes. A simplified formula for polonium inventory estimations at any blanket zone is proposed as well. The polonium inventory evaluation takes into account the initial conditions (primarily bismuth impurity in the lead) and the reactor operation conditions, such as the average availability of a fusion reactor and the blanket operation scenario.