ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Sergei Zimin
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 153-167
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30339
Articles are hosted by Taylor and Francis Online.
Although neutron-induced activation in a fusion reactor is a nonlinear problem whose solution requires the use of both neutron transport and activation codes, a simplified analytical approach to bismuth and polonium build-up in lead is proposed to estimate the polonium inventory and the related biological hazards of LiPb-bearing blankets. All neutronic reactions of polonium build-up in lead and in its bismuth impurities are surveyed and discussed. The contribution of the different possible chains to the build-up of polonium is evaluated. A set of differential equations for the densities of 209Bi and 210Po isotopes in the lead is worked into simplified, easy-to-use expressions. These analytical formulas obtained for the densities can be used for the estimation of both the bismuth and the polonium densities after any reactor operation time and allow identification of the build-up mechanisms of those isotopes. A simplified formula for polonium inventory estimations at any blanket zone is proposed as well. The polonium inventory evaluation takes into account the initial conditions (primarily bismuth impurity in the lead) and the reactor operation conditions, such as the average availability of a fusion reactor and the blanket operation scenario.