ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
S. Chaturvedi, R. G. Mills
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 133-144
Technical Paper | Plasma Heating System | doi.org/10.13182/FST94-A30337
Articles are hosted by Taylor and Francis Online.
The important mechanisms of energy flow in a quasi-isobaric magnetic fusion device have been studied in a three-part paper. In Part I, the spatial profiles of plasma parameters that yield acceptable values of Qdt and plasma dimensions, were determined. These profiles were determined by balancing the dominant terms in the differential energy equations, i.e., conduction, bremsstrahlung, and collisional energy exchange, against each other. One class of equilibria was identified for a more detailed study. In Part II, the contributions of inelastic processes, radiation transport, and alpha-particle heating were studied. These terms, in combination with the dominant terms studied earlier, yield the spatial profile of external heating that is required to balance the energy equations everywhere in the plasma. In Part III, the results of ray-tracing calculations for waves in the lower hybrid range are reported. These calculations show that it is possible to produce such a deposition profile for both electrons and ions, if the launch structure can couple the required k spectrum through the high-density edge plasma.