ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Naguib Aly, H. H. Abou-Gabal
Fusion Science and Technology | Volume 26 | Number 2 | September 1994 | Pages 125-132
Technical Paper | Plasma Engineering | doi.org/10.13182/FST94-A30336
Articles are hosted by Taylor and Francis Online.
A point-kinetics model is used to investigate the effect of the amount of auxiliary power and energy of the injected neutral beam on the dynamics of the International Thermonuclear Experimental Reactor (ITER). Four different confinement scalings are tried. A multigroup slowing-down method is followed to consider the finite thermalization time of the fusion fast alpha particles and the injected neutral beam particles. The analysis shows the ability of the reactor to approach a steady-state operation. An auxiliary heating scenario of 20 MW and 1.3 MeV neutral beam allows steady-state operation without violating the beta limit. The analysis also shows the sensitivity of the reactor dynamics to the confinement scaling. In addition, the analysis shows that the reactor power can be increased by increasing the rate of the injected fuel, but varying the energy of the injected fuel does not affect the reactor power.