ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shigeo Numata, Yasuhiko Fujii, Makoto Okamoto
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 248-254
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30328
Articles are hosted by Taylor and Francis Online.
The catalytic conversion of tritium gas (HT) to tritiated water (HTO) by cement materials is studied by using mortars made of ordinary Portland cement and Portland blast furnace slag cement exposed to HT at concentrations of 3 to 6 × 109 Bq/m3 in air. Within the experimental conditions, no significant difference in the conversion rate is found between the two types of cement. Extended experiments are carried out by using mortars made of ordinary Portland cement to evaluate the catalytic effect of cement materials. The experimental results are explained by a model that assumes that the conversion is dependent on the geometric surface area of the mortars. The mortar surface is found to play an important role in the conversion. The capacity coefficient in mass transfer on the mortar surface and its standard deviation are found to be (4.3 ± 1.4) × 10−11 m/s. The mechanism of the conversion reaction is uncertain in this study. The conversion rate of the catalytic effect by the cement materials is compared with the conversion rate by the radioactive decay of T2. The HTO produced by the conversion is retained in the pore water of the cement materials.