ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Shigeo Numata, Yasuhiko Fujii, Makoto Okamoto
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 248-254
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30328
Articles are hosted by Taylor and Francis Online.
The catalytic conversion of tritium gas (HT) to tritiated water (HTO) by cement materials is studied by using mortars made of ordinary Portland cement and Portland blast furnace slag cement exposed to HT at concentrations of 3 to 6 × 109 Bq/m3 in air. Within the experimental conditions, no significant difference in the conversion rate is found between the two types of cement. Extended experiments are carried out by using mortars made of ordinary Portland cement to evaluate the catalytic effect of cement materials. The experimental results are explained by a model that assumes that the conversion is dependent on the geometric surface area of the mortars. The mortar surface is found to play an important role in the conversion. The capacity coefficient in mass transfer on the mortar surface and its standard deviation are found to be (4.3 ± 1.4) × 10−11 m/s. The mechanism of the conversion reaction is uncertain in this study. The conversion rate of the catalytic effect by the cement materials is compared with the conversion rate by the radioactive decay of T2. The HTO produced by the conversion is retained in the pore water of the cement materials.