ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Weigang Hui, Bassam A. Bamieh, George H. Miley
Fusion Science and Technology | Volume 25 | Number 3 | May 1994 | Pages 318-325
Technical Paper | Alpha-Particle Special / Plasma Engineering | doi.org/10.13182/FST94-A30287
Articles are hosted by Taylor and Francis Online.
An integrated zero-dimensional plasma-control code, ASH, has been developed and employed to study the possibility of controlling the burn condition of a fusion reactor of the International Thermonuclear Experimental Reactor type by modulating the refueling rate. A constant-gain proportional feedback controller is synthesized; the values of feedback gains are obtained by either pole placement or an design. Compared with the use of modulated auxiliary heating alone, modulation of the refueling rate can provide important additional leverage in tokamak burn control. A key feature of this system is the incorporation of robust control theory to allow for modeling uncertainties.