ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. Honda, T. Uda, K. Maki, T. Okazaki, Y. Seki, I. Aoki
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 451-468
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST94-A30252
Articles are hosted by Taylor and Francis Online.
A comprehensive safety analysis code system has been proposed for the quantitative investigation of the safety of nuclear fusion reactors such as the International Thermonuclear Experimental Reactor (ITER). As a first step, the plasma dynamics and the thermal characteristics of the core internal structures have been developed by a one-point model and a time-dependent one-dimensional heat transfer model, respectively. The thermal behavior of ITER during overpower events caused by thermal instability of the plasma has been analyzed. In a truly ignited operation (Q ∼ ∞), the plasma reaches the beta limit in ∼6.5 (3.5) s after insertion of a + 10% fluctuation in fuel density, when the ITER89-L power law (the offset-linear law) is applied. The surface temperature of the divert or tiles rises to ∼1900°C, which may result in damage from erosion and thermal stress. On the other hand, the outboard and inboard structures maintain their integrity during overpower events if the cooling systems function normally. The code system will be integrated step by step to provide overall safety analyses for nuclear fusion reactors.