ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. Petitjean, F. Atchison, G. Heidenreich, H. K. Walter, F. Amelotti, R. Andreani, F. de Marco, S. Monti, M. Pillon, M. Vecchi, V. E. Markushin, L. I. Ponomarev, C. Niebuhr
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 437-450
Technical Paper | Fusion Reactor | doi.org/10.13182/FST94-A30251
Articles are hosted by Taylor and Francis Online.
A design study is presented for an intense 14-MeV neutron source based on muon-catalyzed fusion to be used for first-wall and blanket material research for future fusion reactors. Negative pions are produced inside a 5- to 10-T magnetic field by an intense deuteron beam interacting with a 30- to 50-cm-long carbon target. The pions and the muons resulting from the decay of pions inflight are collected in the backward direction and stopped in a high-density deuterium-tritium (D-T) target. With an 18-MWdeuteron beam at 1.5 GeV (12 mA = 7.5 × 1016 d/s), ∼ 1016 π−/s can be generated, which will decay to muons of which up to 1015 μ−/s stop in the D-T mixture. Assuming Xc = 100 fusions per muon, muon-catalyzed fusion produces 14-MeV neutrons with a source strength of up to 1017 n/s, i.e., a neutron power of 200 kW. A neutron flux of up to 1014/cm2·s (10 dpa/yr) can be achieved in test volumes of several litres. These numbers, however, do not represent a technological limit. This source has about the same power efficiency for neutron generation as low-energy beams (d-Li stripping). It also has the advantage of producing the original 14-MeV fusion spectrum without tails, isotropically into a 4π solid angle. In addition, the power density and heat load of the primary target are a considerably smaller problem. The environment of the secondary target, the neutron source itself, can be made to resemble part of the tokamak ring to be simulated. The noninteracting part of the beam (30 to 40%) can be disposed of separately or reused for another facility (e.g., a spallation neutron source).