ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Sümer Şahi̇n, Ralph W. Moir, Joseph D. Lee, Sabahattin Ünalan
Fusion Science and Technology | Volume 25 | Number 4 | July 1994 | Pages 388-397
Technical Paper | Blanket Engineering | doi.org/10.13182/FST94-A30245
Articles are hosted by Taylor and Francis Online.
The tritium breeding and energy absorption in an inertial fusion energy (IFE) reactor chamber have been investigated with variable coolant zone thickness using different materials. Examples are given for HYLIFE-II (an IFE reactor design) and for magneto-hydrodynamic (MHD) energy conversion chambers using Flibe (Li2BeF4) as coolant. Investigations related to MHD are extended to the use of LiH, lithium, and Lil7-Pb83 eutectic as working fluid. Natural lithium is used in all cases, except in the case of LiPb, for which both natural and enriched options were calculated. To achieve a useful energy density for energy conversion purposes with a sufficient tritium breeding ratio (TBR = 1.1 to 1.2), coolant zone thicknesses must be 25 cm for LiH, 50 to 60 cm for Flibe, and 80 cm for lithium. The use of Lil7-Pb83 with natural lithium and with lithium enriched to 90% 6Li requires coolant zone thicknesses of 120 and 60 cm, respectively, to obtain a tritium breeding of TBR = 1.1, which gives an extremely low energy deposition density. This low density and the large coolant mass make LiPb unattractive for MHD and HYLIFE-II applications.