ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
Hideo Harada, H. Takahashi, Arnold L. Aronson, Takeshi Kase, Kenji Konashi,†, Nobuyuki Sasao
Fusion Science and Technology | Volume 24 | Number 2 | September 1993 | Pages 161-167
Technical Paper | Nonelectrical Application | doi.org/10.13182/FST93-A30222
Articles are hosted by Taylor and Francis Online.
A system of nuclear transmutation is presented in which fission products and transuranics (TRU) are incinerated using 14-MeV neutrons produced by muoncatalyzed fusion (µCF) and a subcritical core composed of fission products and TRU, The 14-MeV neutrons produced by µCF are used to transmute 90Sr (fission product) by the (n,2n) reaction. The outcoming neutrons from the 90Sr cell transmute TRU through fission reactions and 99Tc through (n, γ) reactions. This fission energy is converted into electric energy to supply 4 GeV-25 mA deuteron beam power, which is used to produce µ− mesons. We also evaluate the production of tritium that is consumed as a fuel for µCF. The feasibility of the system was analyzed by the MCNP Monte Carlo neutron transport code. The results show that this system can be subcritical and can transmute fission products and TRU with an incineration half-life of ∼1 yr and that the deuteron beam energy and tritium fuel required to operate the system can be supplied within the system cycle itself.