ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
Jaromir A. Maly, Jaroslav Vávra
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 307-318
Technical Note | Cold Fusion | doi.org/10.13182/FST93-A30206
Articles are hosted by Taylor and Francis Online.
The original solutions of the Schrodinger relativistic equation and the Dirac equation for hydrogen-like atoms were analyzed for the possible existence of some other electron levels, which were not originally derived. It was found that besides the known atomic levels, each atom should also have the deep Dirac levels (DDLs). The electron transition on such DDLs would produce large amounts of atomic energy (400 to 510 keV per transition depending on the Z of the atom). A possible explanation is given for the excess heat effect observed recently in the electrolysis of lithium or potassium ions, based on existing Dirac quantum theory. The same calculation technique is applied to atoms formed from elementary particles such as e−e+, µ+µ−, τ+τ−, e−µ+, e−τ+, µ−τ+, etc.