ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Jaromir A. Maly, Jaroslav Vávra
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 307-318
Technical Note | Cold Fusion | doi.org/10.13182/FST93-A30206
Articles are hosted by Taylor and Francis Online.
The original solutions of the Schrodinger relativistic equation and the Dirac equation for hydrogen-like atoms were analyzed for the possible existence of some other electron levels, which were not originally derived. It was found that besides the known atomic levels, each atom should also have the deep Dirac levels (DDLs). The electron transition on such DDLs would produce large amounts of atomic energy (400 to 510 keV per transition depending on the Z of the atom). A possible explanation is given for the excess heat effect observed recently in the electrolysis of lithium or potassium ions, based on existing Dirac quantum theory. The same calculation technique is applied to atoms formed from elementary particles such as e−e+, µ+µ−, τ+τ−, e−µ+, e−τ+, µ−τ+, etc.