ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Applications open to women for 2025 IAEA fellowship program
The application period for the International Atomic Energy Agency’s Marie Sklodowska-Curie Fellowship Program (MSCFP) has opened. Women interested in studying nuclear-related subjects at the master’s degree level should apply by October 31, 2025.
More information on how to apply can be found here.
Jaromir A. Maly, Jaroslav Vávra
Fusion Science and Technology | Volume 24 | Number 3 | November 1993 | Pages 307-318
Technical Note | Cold Fusion | doi.org/10.13182/FST93-A30206
Articles are hosted by Taylor and Francis Online.
The original solutions of the Schrodinger relativistic equation and the Dirac equation for hydrogen-like atoms were analyzed for the possible existence of some other electron levels, which were not originally derived. It was found that besides the known atomic levels, each atom should also have the deep Dirac levels (DDLs). The electron transition on such DDLs would produce large amounts of atomic energy (400 to 510 keV per transition depending on the Z of the atom). A possible explanation is given for the excess heat effect observed recently in the electrolysis of lithium or potassium ions, based on existing Dirac quantum theory. The same calculation technique is applied to atoms formed from elementary particles such as e−e+, µ+µ−, τ+τ−, e−µ+, e−τ+, µ−τ+, etc.